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Abstract—Balancing fairness, user performance, and system
performance is a critical concern when developing and installing
parallel schedulers. Sandia uses a customized scheduler to man-
age many of their parallel machines. A primary function of the
scheduler is to ensure that the machines have good utilization and
that users are treated in a “fair” manner. A separate compute
process allocator (CPA) ensures that the jobs on the machines
are not too fragmented in order to maximize throughput.

Until recently, there has been no established technique to
measure the fairness of parallel job schedulers. This paper
introduces a “hybrid” fairness metric that is similar to recently
proposed metrics. The metric uses the Sandia version of a
“fairshare” queuing priority as the basis for fairness. The hybrid
fairness metric is used to evaluate a Sandia workload. Using these
results, multiple scheduling strategies are introduced to improve
performance while satisfying user and system constraints.

I. INTRODUCTION

Clusters and other supercomputers often use parallel job
schedulers [2], [3], [4] to dynamically determine the jobs’
execution order and, in some cases, which nodes to allocate to
each job. Users submit jobs to a scheduler (e.g., qsub), giving
information such as expected runtime and the required node
allocation size. The scheduler is responsible for determining
when to start each job. There has been much research eval-
uating various non-preemptive, space shared job scheduling
strategies [10].

The problem can be viewed in terms of a 2D chart with
time along one axis and the number of processors along
the other axis. Each job can be thought of as a rectangle
whose length is the user estimated run time and width is the
number of compute nodes required. The scheduler’s role is to
“pack” sets of jobs into the 2D schedule. Users can submit
new jobs to the system, that need to be incorporated into
the current schedule. Therefore, the schedule must be able to
handle dynamically arriving jobs of various sizes. Schedulers
inherently use a queue to store jobs that have arrived but have
not been launched or started. The generated schedules must
be sensitive to both user and system needs such as: how long
does it take for each user’s job to run and how well the system
resources are being utilized.

The simplest way to schedule jobs at a single site is to
use a strict First-Come-First-Serve (FCFS) policy. However,
this approach suffers from low system utilization [16]. A strict
FCFS policy ensures that jobs are started in the order of arrival.
Therefore, only jobs from the head of the queue can be started.
A job that is not at the head of the queue must wait, even if
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Fig. 1. An example of a simple FCFS schedule without backfilling
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Fig. 2. An example of a backfill in an FCFS backfilling schedule

there are currently enough resources available. For instance,
in Figure 1 jobB can not start, even though there are enough
resources available. Therefore, a strict FCFS policy is “fair”
but leads to poor utilization and a poor average turnaround.

Backfilling [22], [23] was proposed to help improve system
utilization and has been implemented in most production
schedulers [14], [28]. Backfilling is the process of starting a
job that is lower in the queuing priority order before the job
that is at the head of the queue. Backfilling identifies ”holes”
in the 2D chart and moves forward smaller jobs that fit into
these holes, without delaying any jobs with future “internal”
reservations. This helps improve utilization, by not allowing
processors to remain idle if there is a job that fits in a hole, and
helps to reduce average turnaround time due to the increased
utilization. Figure 2 shows a similar situation to Figure 1,
except jobB is now allowed to start due to backfilling.

We will now define what it means for a job to fit into a



hole in the schedule. A backfilling scheduler creates internal
reservations for some of the jobs. These reservations, as well
as time blocked off for running jobs, provide a schedule in
which jobs are allowed to backfill. A hole is an open space
in this 2D chart. Backfilling allows a job that fits into this
schedule to improve its internal reservation (by obtaining an
earlier time slot), as long as it fits into a hole and does not
violate any other reservations.

There are two common variations to backfilling - con-
servative and aggressive (EASY)[11], [28]. In conservative
backfilling, every job is given an internal reservation when
it enters the system. A smaller job is moved forward in the
queue as long as it does not delay any previously queued
job. In aggressive backfilling, only the job at the head of
the queue has a reservation. A small job is allowed to leap
forward as long as it does not delay the job at the head of the
queue. No guarantee backfilling is a less often used variation.
In no guarantee backfilling, no jobs are given reservations.
This has the possibility of leading to starvation (see below)
and is therefore not often used. Many production schedulers
use variations between conservative and aggressive backfilling,
giving the first n jobs in the queue a reservation.

Other parallel job scheduling techniques have been designed
to reduce the turnaround time for users [8], [17], [12], [30]
and increase utilization [16], [18] in a “fair” environment.
Until recently, fairness was not a primary concern in much
of the research literature. However, fairness has always been
a primary concern when setting up a parallel job scheduler.

This fairness concern is evident in the scheduler developed
and put into production at Sandia National Laboratories on
various machines (e.g., CPlant [1]). The Sandia scheduler
prioritizes jobs using a decaying processor-time value. This
value tracks the usage of each user and decays on a regular
basis. This attempts to provide users who have not recently
used the machine priority over other users. The intent of this
queuing priority is to provide a sense of fairness among users.

The remainder of this paper is organized as follows: Section
II examines the original Sandia scheduling policies and work-
load studied in this paper. Section III discusses the simulation
methodologies used in this study. Section IV reviews existing
fairness metrics for parallel job schedulers and introduces
a “hybrid” metric. Section V introduces a few scheduling
policies designed to reduce unfairness. Section VI examines
the effects of the scheduling policies introduced in Section V.

II. SANDIA ENVIRONMENT

This study examines the CPlant/Ross machine at Sandia
National Laboratories. The scheduling policy and workload
logs were required to perform this case study. The scheduler
policy was obtained via the CPlant website. The raw workload
logs were obtained from PBS and yod logs.

A. Scheduler
The baseline scheduler in use (at the time the study was

completed) on the CPlant machine was a no guarantee backfill
variant. The queuing policy was based on a “fairshare” queuing
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Fig. 3. The offered load and actual utilization of the CPlant/Ross workload
between December 1st 2002 and July 14th 2003

priority aimed at providing a level of user fairness. The
“fairshare” queuing order was determined by a historical sum
of processor-seconds used that decayed every 24 hours. This
provided priority to users who had not recently used the
machine. There were no internal reservations. At each schedul-
ing event (job completion and job arrival), the queue was
processed in fairshare priority order; if there were sufficient
nodes, a job was started (i.e., no guarantee backfilling). This
has been shown to negatively affect wide jobs, as it is unlikely
that enough nodes will be free for a wide job to start, as lower
priority, narrower jobs will be allowed to start ahead of it.

To prevent wide jobs from starving, a secondary “starvation”
queue was used. The starvation queue used an FCFS priority
order, rather than “fairshare”. The head of the starvation queue
received an internal reservation (i.e., aggressive backfilling),
and thus progress was guaranteed.

B. Workload
Workload logs from the CPlant system from December 01,

2002 to July 14, 2003 were collected and processed for use in
this study. The trace was converted to the Standard Workload
Format (SWF V2) from multiple system logs (PBS and the
job launcher, yod). Effort was taken to track the user id, group
id, start time, completion time, submit/queue time, wall clock
limit (i.e., user estimated runtime) and nodes requested. The
timing and node information are required to characterize the
shape of a job. The user id’s are required to compute the
“fairshare” value for the Sandia scheduling policy. User and
group id’s were replaced sequentially (e.g., the first user is
given an id of 1) to remove the actual user and group id’s for
public release. A superset of the traces will be released via
the workload archive [9] soon.

The trace contains 13614 jobs over the 7.5 months (231
days). The trace contains periods of very high utilization
(over 90%), see Figure 3. The offered load shows the amount
of queued workload over time, while the utilization shows
the actual achieved utilization. The CPlant workload contains
many weeks where the offered load is much greater than
100%, implying that not enough resources are available to
complete the work given to the system in that time period.
High load weeks are often followed by weeks where the load



CPlant/Ross
December 01, 2002 to July 14, 2003

1.0E+00

1.0E+01

1.0E+02

1.0E+03

1.0E+04

1.0E+00 1.0E+02 1.0E+04 1.0E+06 1.0E+08
Runtime (sec)

No
de

s

Fig. 4. The runtime and node usage for the CPlant/Ross workload between
December 1st 2002 and July 14th 2003

TABLE I
NUMBER OF JOBS IN EACH LENGTH/WIDTH CATEGORY

0-60 1-8 8-16 16-24 1-2 2+
nodes mins hrs hrs hrs days days

1 822 51 7 3 6 16
2 538 8 2 0 1 0

3-4 1112 328 26 3 5 5
5-8 1070 855 142 90 76 91
9-16 1163 553 260 141 205 160

17-32 1525 185 67 53 116 160
33-64 1009 204 79 48 130 178
65-128 566 109 49 24 53 76

129-256 574 14 12 1 3 10
257-512 171 9 1 0 0 1

513+ 69 1 0 0 0 0

TABLE II
PROCESSOR-HOURS IN EACH LENGTH/WIDTH CATEGORY

0-60 1-8 8-16 16-24 1-2 2+
nodes mins hrs hrs hrs days days

1 75 118 70 62 259 2883
2 102 21 53 0 68 0

3-4 1300 3482 1030 213 614 1310
5-8 1382 16845 12107 14118 18287 92549

9-16 1624 30697 45859 42072 105884 207496
17-32 7838 17638 22031 28232 109166 363944
33-64 4670 35681 48457 48493 251748 986649
65-128 6025 36458 53098 48296 179321 796517

129-256 15668 8541 27041 5451 19030 183949
257-512 8442 11877 3888 0 0 30761

513+ 12195 3183 0 0 0 0

is much lower. These cyclic low load periods are likely due
to the users submitting fewer jobs due to the extremely high
queue lengths and wait times.

Figure 4 plots the submitted jobs. Many users choose
“standard” node allocations that are powers of two or squares,
as seen in other workloads [9], [13]. Table I shows that most
of the jobs are short; few jobs use 2-4 nodes, and few jobs
use more than 128 nodes. However, there are quite a few very
long jobs in the workload. Table II shows the same data as
Table I, but in total processor-hours instead of just number
of jobs in each category. This shows that even though there
are fewer longer jobs than short jobs, the wide and long jobs
represent a significant portion of the workload.

Figure 5 plots user estimates vs. actual runtimes for each
job. The custom PBS scheduler kills jobs after the user
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Fig. 5. User estimates for the CPlant/Ross workload between December 1st
2002 and July 14th 2003

supplied wall clock limit (WCL) is reached. However, if no
other job requires the processors, the job is allowed to continue
running until the processors are needed. This results in a few
jobs having longer runtimes then estimated. The process of
killing jobs and the effect job placement has on runtimes
[21] lead to many users providing user estimates that are
much longer than the expected runtime. The intentional over
estimations, combined with unknown system and networking
contention and jobs that abort unexpectedly explain much
of the overestimation seen. Attempts to reduce networking
contention are documented in [5], [7], [20], [21], and [32].

III. SIMULATION ENVIRONMENT

A. Simulator
A locally developed event based simulator was used to sim-

ulate various scheduling policies using the CPlant workload
log. The simulator can simulate multiple queuing orders and
reservation depths. The necessarily modifications were made
to simulate any of the scheduling algorithms presented. The
scheduler takes as input a trace file in the Standard Workload
Format V2 [9].

B. Standard Metrics
Parallel job scheduling metrics can be divided into two

major categories: user and system metrics. User metrics are
designed to measure the performance of a particular schedule
from a users point of view. System metrics measure the
performance from a “system” or administrative point of view.

1) User Metrics: Common user metrics include wait time,
turnaround time, and slowdown. Waitime measures the time
between jobi’s arrival and jobi’s start times. Turnaround time
measures the time between jobi’s arrival and its completion.
Average Turnaround Time =

∑
j∈jobs(j.completetion time− j.arrival time)

∑
j∈jobs 1

2) System Metrics: Utilization is the most common system
metric. However, in simulation based studies, utilization is a
poor measure of performance. In simulation studies, utilization



simply is an indirect measure of makespan, as the workload
of all schedulers is a constant.

Utilization =

∑n
i=1

jobi.used processors ∗ jobi.runtime

Makespan ∗ SystemSize
,

where Makespan = MaxCompletetionTime - MinStartTime.
Loss of Capacity (LOC) (see Equation 1) is often used in

lieu of utilization. LOC measures the fraction of the processor
cycles that were left idle when jobs were in the queue. LOC
exists due to the non-work conserving nature of the job
schedulers; a work-conserving schedule will, by definition,
have a LOC of 0. LOC is a good metric to measure the system
performance of parallel backfill scheduling simulations. The
metric measures the extent to which the schedule is “packed”.
A low LOC implies that the unused cycles are not due to
the scheduling policy, but rather the offered workload. A high
LOC implies that the scheduler is not able to pack the jobs,
and increasing offered load will not affect utilization.

IV. FAIRNESS METRICS FOR PARALLEL JOB SCHEDULING

Recent work has introduced fairness metrics designed for
the parallel job scheduling domain. Vasupongayya and Chiang
[31] examine the use of common techniques to measure
fairness. The standard deviation of the turnaround time and
fairness index [15] are considered as a basis to measure
fairness. These metrics assume that it is undesirable to have a
high standard deviation; however, this is not the case for bursty
workloads seen in parallel job scheduling. It is desirable that a
job arriving in a low load condition (e.g., late evening) receive
a much better turnaround time than a job arriving in heavy load
(e.g., mid morning).

Srinivasan et. al [29] recognize that both an FCFS no-
backfilling schedule and an FCFS conservative backfill sched-
ule (e.g., unlimited reservations) provides a “fair” schedule
when perfect user estimates are assumed. The schedule is
“fair” in a social justice [19] sense, as no job can be affected
by a later arriving job. A no-backfill schedule is undesirable
as the average turnaround time is very large and the utilization
is very low. Therefore, the conservative backfill schedule as-
suming perfect estimates (CONS P) is assumed to be a “fair”
schedule. The simulated start of each job in a scheduler under
test, using inaccurate user estimates, is compared against the
CONS P start time. The sum of these differences represents
the “unfairness” of the schedule.

Sabin et. al. [25], [26], [27] have introduced multiple
fairness metrics for parallel job schedulers. The first metric
is based on defining a fair start time (FST), similar to the
CONS P metric defined above. The CONS P metric has the
apparent advantage of creating a single set of FSTs. However,
while the feature allows simple comparisons of schedules, it
detracts from its ability to accurately measure fairness. If a
schedule has a higher utilization than the CONS P schedule,
jobs run deliberately out of order can seem fair. Assume that
two identically shaped jobs (jobA and jobB) arrive at time
ta and tb, with ta < tb. It is feasible for joba to start after
jobb, yet have both jobs start well before the CONS P FST,

resulting in a schedule that appears fair via the CONS P
metric. In an attempt to more accurately capture fairness, Sabin
and Sadayappan attempt to directly measure the effect of later
arriving jobs. The revised metrics calculates an FST for each
job, by creating a schedule assuming no later jobs arrive. The
start time in the new schedule represents the jobs FST. This
has the advantage of directly measuring if a latter arriving job
affected any jobs. This scheme allows “benign” backfilling,
e.g., latter arriving jobs to start earlier if they do not affect any
earlier job. A disadvantage of this technique is that the FST
relies on the scheduling policy in place. While this eliminates
the performance effects seen in the CONS P FST, it makes
comparisons across different schedules difficult, as each job
has a different FST in each schedule. The aggregate unfairness
metric is calculated by summing the total unfairness (time each
job misses its FST) or measuring the percentage of the load
that misses its FST.

The second metric introduced by Sabin and Sadayappan
[26] measures resource equality. The metric is inspired by
networking and operational fairness metrics [24]. The metric
measures to what extent each job was able to receive its
“share” of the resources while in the system. The basis for
this metric is that each job “deserves” 1/N of the resources
while in the system, where N is the number of “live” (running
or queued) jobs. This metric does not rely on the scheduler in
place (such as the FST based metric above), and thus can be
used to compare schedules.

A Hybrid “Fairshare” Metric
This paper introduces an FST metric that falls somewhere

between the CONS P metric and the FST metric introduced
by Sabin and Sadayappan. The metric is intended to reduce
the reliance on the actual scheduler under test (increasing the
ability to use the metric globally, to compare traces) while
not using a “gold standard” schedule that is “blessed” as an
ideally fair schedule.

This FST metric is a hybrid of the two FST metrics above.
The FST for each job is determined using a list scheduler. A
list scheduler keeps track of a completion time for each node.
When scheduling a job, the earliest time that N nodes can be
found is located (where N is the number of nodes required
by the job). The completion time of each of the nodes is then
updated to be the earliest start time plus the runtime of the
job (i.e., the completion). There are fewer restraints then a
no backfill scheduler, as jobs are not required to run in a
strict no backfill order. However, it is more restrictive than a
conservative backfill schedule, as “holes” can not be used.

In addition, the state of the scheduler upon job arrival is used
as the starting state for each simulation. This is in contrast
to the CONS P FST metric which compares start times to
a complete conservative schedule. The metric differs from
the previous Sabin and Sadayappan FST metric by using a
CONS P policy in lieu of the actual policy under test.

In addition, the previous FST based metrics assume an
FCFS scheduling order. Thus, the previous Sabin and Sadayap-
pan FST metric attempts to measure the effect of latter arriving



LOC =

∫ max time

t=0
min(

∑
q∈queuedJobs q.nodes, SystemSize−

∑
r∈runningJobs r.nodes)

Makespan ∗ SystemSize
(1)

jobs, and the CONS P metric uses an FCFS conservative
schedule. In many environments, FCFS is not considered a
socially just schedule. Sandia uses the fairshare queuing pri-
ority because that queuing order is considered fair. Therefore,
the hybrid metric used in this paper assumes that if all jobs
were run in “fairshare” order, the scheduler is fair. Thus, the
metric attempts to determine the effect of lower priority jobs
on each job. Thus the hybrid FST is generated using a no
backfill schedule using the fairshare queuing priority. For a
case study of fairshare scheduling without backfill, see [6].

The FST schedule is generated starting with the schedule
in the state (i.e., running schedule, queued jobs) upon job
arrival, eliminating many of the performance effects seen in
the CONS P metric. Fairness priorities other than “fairshare”
could be used to perform similar evaluations using different
socially just priorities.

As in the previous FST based metrics, the average miss time
of the unfair jobs is calculated as:
AverageFairStartMissTime =

∑
j∈jobs max(0, j.start time − j.FST )

∑
j∈jobs 1

.

V. FAIRNESS DIRECTED POLICIES

The actual scheduling policy described in Section II is
intended to provide good system utilization, good user metrics,
and provide a fair environment for users. This section analyzes
the current scheduling policy to provide algorithms designed
to improve fairness, while minimally affecting utilization and
turnaround time.

The original scheduling policy attempts to run jobs in a fair
order by using the “fairshare” queuing priority. However, in
order to improve performance, this priority order is not strictly
adhered to. Jobs can run out of order via backfilling, which is
essential in parallel job scheduling. However, the policy uses
no internal reservations (until the job has been in the system
for at least 24 hours) which tends to increase utilization but
provides a mechanism for unfairness. Without reservations,
wide jobs will have a tendency to “starve” allowing narrower
jobs an “unfair” advantage.

Further, the lack of internal reservations requires a sec-
ondary queue to prevent starvation. The starvation queue
allows jobs to make progress regardless of fairness and is not
sorted by the fairness policy. Therefore, the use of a starvation
queue is another avenue to introduce unfairness.

A. Maximum Runtime Limits
The first potential policy to help reduce unfairness is to

reduce the maximum contiguous runtime of individual jobs.
This mechanism would require jobs longer than a predefined
threshold to be broken up into multiple smaller jobs. Reducing

the maximum runtime is a mechanism to allow very coarse
scale “preemption”, as long jobs must be submitted as several
individual jobs. Breaking up very long jobs allows other jobs a
chance to start after each “chunk” of the large job completes.
This technique also has the potential to improve user and
system metrics due to the coarse preemption being introduced.

Introducing runtime limits is a feasible policy on CPlant.
Users currently checkpoint their jobs frequently. The check-
points are currently used to help eliminate wasted cycles
due to hardware failures. Therefore, creating the necessary
checkpoints for maximum runtime limits would add minimal
overhead. In addition, the Sandia staff have created scripts to
allow users to start jobs from checkpointed runs. These scripts
would ease the burden of restarting jobs from the checkpoints.

The initial “live” Sandia CPlant scheduler does not impose
any runtime limitations. Simulations are run using the original
policy and with a runtime limitation of 72 hours, breaking
longer jobs up into several 72 hour segments.

B. Limit Entrance to the Starvation Queue
The starvation queue allows jobs the opportunity to obtain

an internal system reservation after 24 hours, and the job can
start regardless of whether it is “fair” to start the job. To help
improve fairness, jobs from “heavy” users can be temporarily
restricted from entering the starvation queue.

This technique has the advantage of being a “simple”
change that will have minimal impact on users work flow and
standard user and system metrics.

C. Conservative Backfilling
Conservative backfilling gives every job an internal tem-

porary reservation when it enters the system. In conservative
backfilling, each job attempts to find a better reservation during
each scheduling event. The jobs do not relinquish their current
reservations unless better reservations are found. Therefore,
when each job arrives, an upper bound on the wait time is
established; this eliminates the need for a “starvation queue”.

The queue is still processed in “fairshare” order during each
scheduling event, giving higher priority jobs the opportunity to
find a better reservation before lower priority jobs. However,
each job receives its initial reservation as it arrives in the
system. This tends to introduce an FCFS feel to the schedule
and reduce the effectiveness of queuing policies. However,
the queue order is still very important due to inaccurate
user estimates. Inaccurate user estimates (seen in Section
II) allow jobs to attempt to backfill. The “fairshare” queue
priority allows “deserving” jobs to attempt to improve their
reservations first.

D. Conservative Backfilling with Dynamic Reservations
Dynamic reservations helps to remove the “FCFS feel”

from conservative backfilling. Initial reservations are no longer



upper bounds on the waittime. At each scheduling event, all
reservations are removed and a schedule is created in fairshare
priority order. A potential issues with any conservative scheme
is reduced utilization. It is important to ensure that utilization
is not adversely affected.

Both this scheme and the current “no reservation” scheme
provide no hard internal guarantees upon job arrival. However,
the dynamic backfilling scheme prevents “fair” jobs from
starving. This removes the need for a “starvation queue”.

E. Scheduling Policies Presented
The original scheduler is a no-reservation backfill sched-

uler with a custom “fairshare” queue order. A job is
moved to the “starvation queue” 24 hours after submission
(cplant24.nomax.all). The following modified scheduling poli-
cies were examined:

1) the original CPlant scheduler except jobs are not con-
sidered for the starvation queue for 72 hours, instead of
24 hours (cplant72.nomax.all);

2) the original CPlant scheduling policy except
“heavy”/”unfair” users are not allowed to enter
the starving queue (cplant24.nomax.fair);

3) introduce a 72 hour maximum runtime and use the
original CPlant scheduling policy (cplant24.72max.all);

4) use all three of the above modifications: 72 hour maxi-
mum runtime, “unfair” users cannot enter the starvation
queue, and 72 hours until jobs are considered for the
starvation queue (cplant72.72max.fair);

5) a conservative backfilling scheduler with the fairshare
queuing priority (cons.nomax);

6) a conservative backfilling scheduler with the fairshare
queuing priority and introduce 72 hour runtime limits
(cons.72max);

7) a conservative backfilling scheduler with dynamic reser-
vations (consdyn.nomax);

8) a conservative backfilling scheduler with dynamic reser-
vations and 72 hour runtime limits (consdyn.72max).

VI. RESULTS

We group our results into two categories, minor changes
and conservative backfilling.

A. Minor Changes
Increasing the time before a job is allowed in the starvation

queue and/or barring “unfair” jobs from the starvation queue
impose only “small” changes on the scheduler and will be
mostly transparent to the users. The introduction of maximum
runtimes will change the environment for the few users with
very long jobs, but existing scripts will help ease the burden
of the required checkpointing and restarting. These policy
changes will be “easily” implemented and have a small impact
on most users. In fact, it is expected that these changes will
be minimally noticeable to most users who are investigating
the queue status.

The left and center of Figure 8 show that all enhanced
policies reduce the number of jobs that are able to start before
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Fig. 6. Average fair start miss time for initial CPlant simulations by width
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Fig. 7. Average turnaround time for CPlant Simulations categorized by width

their “fair start time”. The most improvement is seen when
all three scheduling enhancements are used simultaneously.
The left and center of Figure 9 show that only introducing
maximum runtimes is able to reduce the average miss time.
This suggests that while banning “heavy” users from the
starvation queue or increasing the time until a job is allowed
to starve helps to reduce the percentage of jobs that miss the
fair start time, the jobs that do miss are hurt badly. Without
any internal reservations, wide jobs are unlikely to get enough
nodes to start, due to the existence of narrower jobs. These
wide jobs rely on the starvation queue to start. By increasing
the wait time before entering the starvation queue, the number
of jobs that miss the fair start time is reduced, but the jobs
that require the starvation queue to start now must wait much
longer (see Figure 6).

While fairness is an important metric, it is important that the
user and system metrics are not adversely affected. The left
and center of Figure 11 show that the average turnaround time
for the enhanced scheduling policies. The average turnaround
time is improved for most of the enhanced policies. Imposing
maximum runtimes on very long jobs allows for very coarse
grained preemption. This allows better progress for wide
jobs (see Figure 7), improving both the fairness and average
turnaround time. The left and center of Figure 13 show the loss
of capacity. Again, for the schedules that show an improved
average miss time and an improved average turnaround time,
the loss of capacity is also improved.
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Fig. 9. Average fair start miss time for all CPlant/Ross simulations
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Fig. 10. Average miss time for the CPlant/Ross conservative backfilling
simulations categorized by width

Introducing 72 hour maximum runtime improves the per-
centage of fair jobs, the average miss time, the average
turnaround time, and the loss of capacity. Increasing the wait
time to enter the starvation queue and disallowing “heavy”
users from the starvation queue reduces the number of jobs
treated unfairly, but has a negative effect on average miss
time and can hurt user and system metrics. Using all three
enhancements simultaneously further reduces the percent of
jobs treated unfairly and the average turnaround time, but the
average miss time and the loss of capacity are slightly worse
than only introducing a 72 hour maximum runtime.

B. Conservative Backfilling Results
Figure 8 right of center shows the percentage of jobs that

miss their fair start time. All conservative scheduling policies
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Fig. 11. Average turnaround time for all CPlant/Ross simulations

0
100000
200000
300000
400000
500000
600000
700000
800000

1 2 3-4 5-8 9-1
6
17

-32
33

-64
65

-12
8

12
9-2

56

25
7-5

12
51

3+

Job Width
Av

er
ag

e 
Tu

rn
ar

ou
nd

 T
im

e cplant24.nomax.all
cons.nomax
consdyn.nomax
cons.72max
consdyn.72max

Fig. 12. Average turnaround time for CPlant/Ross Simulations with conser-
vative backfilling categorized by width

outperform the original policy. However, without a 72 hour
runtime limitation, the conservative scheduling policies have
a higher average miss time than the current policy (see Figure
9 right of center ). A conservative dynamic scheduling policy
has the fewest unfair jobs, but the jobs that do miss are treated
very unfairly. The only policy to show a marked improvement
in both percent of unfairly treated jobs and average miss time
is the conservative backfilling policy with 72 hour maximum
runtime limitations. In all cases, a 72 hour runtime limitations
appears to be an important feature to improve system wide
fairness. The conservative scheme with 72 hour limits appears
to be a very competitive scheme. In addition, the conservative
backfilling scheme is able to reduce the unfairness of wide jobs
(see Figure 10 ), which is important as the supercomputers are
purchased to efficiently run parallel code that would otherwise
be impossible or require a very large sequential runtime.

Figure 11 right of center shows the average turnaround
time for all policies; Figure 12 shows the average turnaround
time for conservative scheduling policies categorized by width;
and Figure 13 right of center shows the lost of capacity
for all policies. Conservative scheduling policies often have
poor average turnaround time and utilization. However, the
introduction of 72 hour job limits appears to improve the
performance of the conservative schedules. The conservative
schedule with 72 hour job limits has a superior average
turnaround time and a lower loss of capacity than most of
the other schemes. The coarse grained preemption allows for
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Fig. 13. Loss of capacity for all CPlant/Ross simulations.

better schedule packing and a reduction in average turnaround.

VII. CONCLUSIONS

A CPlant workload trace was analyzed and presented. This
trace was used to evaluate the fairness of the CPlant scheduler.
Past fairness work was modified to accommodate a scheduling
order considered “fair” in the Sandia environment. Scheduling
modifications were introduced to improve fairness, average
turnaround time, and loss of capacity.

A hybrid fairness metric is used to measure the fairness
of the scheduling policies. The fairness metric is modified
to utilize the “fairshare” queuing priority as the basis for
social justice based fairness, as opposed to FCFS. The hybrid
metric reduces the impact of the performance (as seen when
using the CONS P metric) and the dependence on the current
schedule (as seen when using a previous FST based metric).
The fairness metric can be modified in a similar way to
measure fairness via other alternative fairness priorities. This
metrics allows for the analysis of unfairness by measuring the
percentage of jobs that are treated unfairly and the average
time that each submitted job misses the fair start time.

Several modifications to the CPlant scheduler were con-
sidered. Using a conservative backfilling schedule can help
improve the fairness of wide jobs, which is important to super
computing centers. Introducing 72 hour runtime limitations
has the largest effect on fairness, loss of capacity and, average
turnaround time.
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